Programming with
Python

Duke UPGG Scientitic Computing Bootcamp
August 12, 2019
Dan Leehr
dan.leehr@duke.edu

mailto:dan.leehr@duke.edu

Dive Into PYthOll
Python 3

ngt&ﬁ' ,!Hit'n‘g' Programming in

e W Python 3
- A Complete Introduction 1o the
thon La age

What are the best
books about ...

@, python

Beginning programming

Computer @~ ith Python
b el DUMMIES

in 2016 ?

Foundations of R T . .
Python Network / Pyt h O n Pytho
- - — Visualizatio

Programming

Essential Reference

Luclano Ramalho

Internet
Natural Language : rogramming
Processing with
Python & -
» A Primer on Scientific
Programming
with Python

Introduction to™) Python
Machine =7 Standard
Learning Library

X Parallel Programming
with Python with Python

What book should | read?”

How many books about riding a bike did you read?

“You can be a scientist in the science
of bike ride mechanics and it still won't
help you one bit to do the actual thing.”

http://twonontechies.com/bicycles-can-help-you-learn-programming/

http://twonontechies.com/bicycles-can-help-you-learn-programming/

Why Python?

We have to use something
it's free, well-documented, and runs everywhere
Large community among scientists

Relatively easy to pick up, but programming Is
hard!

Goals

Write and run programs in Python
Understand basic data types and functions
Work with files and libraries

Know where to look for more help

| know, I'll use Python!

Download

* Download the python-fasta.zip file from the course
website - Syllabus.

* Unzip it and place on your Desktop:

python-fasta/
ae.fa
ls_orchid. fasta

1. Open Anaconda Navigator (installed with

Anaconda

2. Click to launch Jupyter Notebook

{D ANACONDA NAVIGATOR

A Home

‘ Environments

‘ Learning

an Community

Documentation
Developer Blog

Feedback

) Anaconda Navigator

Applications on] base (root)

v Channels

jupyterlab

A 0321

An extensible environment for interactive
and reproducible computing, based on the
Jupyter Notebook and Architecture.

Launch

e
Jupyter
S’

notebook

A 550

Web-based, interactive computing notebook
environment. Edit and run human-readable
docs while describing the data analysis.

Launch

Sign in to Anaconda Cloud

G Upgrade Now

Refresh
e
C Yo) i © O
]
— Jupyter
Files Running Clusters

Select items to perform actions on them.

10 ~ W/
(O anaconda3
(O ansible

3 Applications
2 bin

(2 Box Sync

3 capture

~] (O Code

(O cookied_conf
(O Data

(3 dc_workshop
(3 deploy

(O Desktop

M diud

localhost:8888/tree ¢ (4]
Home
Quit
Upload

Name ¥ Last Modified

a year ago

a year ago

3 hours ago
4 days ago

2 years ago

2 years ago

4 months ago
4 years ago

2 months ago
3 days ago

2 months ago

2 minutes ago

[, Y T g

t

Logout

New

File size

al

~
s

-

Begin Jupyter
Notebook

Data lypes

* Numeric:
* Integer: 1, 76, 400
 Float: -1.2, 0.5, 3.1415926 (Use a decimal point)
* Boolean: True, False

e [ext:

o Strings: ‘ACTGACAG' (Wrap in quotes)

Strings

e Strings can be created with quotes or double gquotes:
name = 'Daniel’

e Access individual letters as strings with [] (starting at O)

name[@] # D
name[l] # a

 Check if a letter exists in a string

J L

a' 1n name # True

] ||

a' not 1n name # False

Variables

* Assign variables with equals
X = 3
* Access variables by name

print x # 3

* Variables work like sticky notes, they're just a label
on top of a value

What do we know??

Our sequence is a string, in seq10

Strings are sequences of characters, each at a
numbered position (starting from 0)

We can extract characters as strings with square
brackets []

We can combine strings together with +

EXxercise: Reverse

* Write some code that reverses the segquence In seq.
* |t should
1. Create an empty string variable rev

rev =

2. Loop over the items in seq, adding these to rev In
reversed order

3. Print the contents of rev

| O0PS

* Write a loop with for item in collection:

for letter in word:
orint letter

* Always put a colon at the end of the line, indented
ines are run for every item in the collection

Complementing

We can loop over all the

. A —
bases in a sequence
Fach base has a complement C -
that we should substitute:
T —

We can use a Dictionary to
store this mapping.

Dictionaries and Lists

* Create dicts with {}, lists with []

nucs = {'A': 5, 'C': 4, '"T'": 8}
counts = [5,4,8]

o Both accessed with [] - dicts by key, lists by index

=

5
5

nucs['A'"_
counts[0]

&

3 # now 3
3 # now 3

nucs['A'""
counts[0]

GC-content percentage

 Calculatedas(G+C)/(A+T+G +C)

e Create a GC count variable and an ATGC count
variable

 Loop over each base in the sequence
e |f G, add 1to GC count
e |t C add 1to GC count

* For everything, add 1 to ATGC count

Conditionals

Test cl for True or False
1f cl:
print "cl was True”
cl was False, check c/
el1f c2:
print "cl False but cZ2 True”
ALl checks False
else:
print "Both False”

Exercise: Functions

bases = 'adenine cytosine guanine thymine'
Write some code that:
* Makes a list of these bases from the string
* Uppercases the names (e.g. [ADENINE', ...])
* Reverses the order (e.g. [THYMINE',...])

Hint: Use help(str) and help(list) to see what functions are
available for strings and lists

Bonus: Write a for loop to print the first letter of each (e.g. A, C, ...)

Exerclse

e Strings can be reversed with this special slicing notation:

[::-1]

- Update reverse() function to use [::-1] instead of a loop.

- Do we need to do anything to comp lement () ?
What about reverse_complement()?

Functions

Calling functions: length = len('abc')

Defining functions:

def double(x):
return x * 2

Composing functions:

def reverse_complement(seq):
return reverse(complement(seq))

Avoid using global variables in functions

Exerclse

* Write a function, read_fasta(filename) that:
e Takes 1 argument: f1lename

* Reads the file line-by-line
o Strips/combines the lines into one long line
e Skips the line if it contains a >

| I |

e Hint:1f not "1' 1n ‘team’:

Reading files

* Open a file with the open() function:
f = open('ae.fa')
* Loop over lines, and strip() each one

for line 1n f:
print line.strip()

e Close with f.close()

 Put code in afile, give it the .py extension
* Read command line-arguments from sys.argv:
import sys
print sys.argv[0]

print sys.argv[1]

$ python script.py hello
script.py
hello

* Check the length of sys.argv to be helpful!

