
Programming with
Python

Duke UPGG Scientific Computing Bootcamp
August 12, 2019

Dan Leehr
dan.leehr@duke.edu

mailto:dan.leehr@duke.edu

What book should I read?
How many books about riding a bike did you read?

“You can be a scientist in the science
of bike ride mechanics and it still won’t
help you one bit to do the actual thing.”

http://twonontechies.com/bicycles-can-help-you-learn-programming/

http://twonontechies.com/bicycles-can-help-you-learn-programming/

Why Python?

• We have to use something

• It’s free, well-documented, and runs everywhere

• Large community among scientists

• Relatively easy to pick up, but programming is
hard!

Goals
• Write and run programs in Python

• Understand basic data types and functions

• Work with files and libraries

• Know where to look for more help

I know, I’ll use Python!

Download

• Download the python-fasta.zip file from the course
website - Syllabus.

• Unzip it and place on your Desktop:  
 
python-fasta/  
 ae.fa  
 ls_orchid.fasta

1. Open Anaconda Navigator (installed with
Anaconda)

2. Click to launch Jupyter Notebook

Begin Jupyter
Notebook

Data Types
• Numeric:

• Integer: 1, 76, 400

• Float: -1.2, 0.5, 3.1415926 (Use a decimal point)

• Boolean: True, False

• Text:

• Strings: ‘ACTGACAG' (Wrap in quotes)

Strings
• Strings can be created with quotes or double quotes:  
 
name = 'Daniel'

• Access individual letters as strings with [] (starting at 0)  
 
name[0] # D  
name[1] # a

• Check if a letter exists in a string  
 
'a' in name # True  
'a' not in name # False  

Variables
• Assign variables with equals 
 
x = 3

• Access variables by name 
 
print x # 3

• Variables work like sticky notes, they’re just a label
on top of a value

What do we know?
• Our sequence is a string, in seq10

• Strings are sequences of characters, each at a
numbered position (starting from 0)

• We can extract characters as strings with square
brackets []

• We can combine strings together with +

Exercise: Reverse
• Write some code that reverses the sequence in seq.

• It should

1. Create an empty string variable rev  
 
rev = ''

2. Loop over the items in seq, adding these to rev in
reversed order

3. Print the contents of rev

Loops

• Write a loop with for item in collection:  
 
for letter in word:  
 print letter

• Always put a colon at the end of the line, indented
lines are run for every item in the collection

Complementing

• We can loop over all the
bases in a sequence

• Each base has a complement  
that we should substitute:

• We can use a Dictionary to
store this mapping.

A → T

C → G

T → A

G → C

Dictionaries and Lists
• Create dicts with {}, lists with []  
 
nucs = {'A': 5, 'C': 4, 'T': 8}  
counts = [5,4,8]

• Both accessed with [] - dicts by key, lists by index 
 
nucs['A'] # 5  
counts[0] # 5  
 
nucs['A'] = 3 # now 3  
counts[0] = 3 # now 3

GC-content percentage
• Calculated as (G + C) / (A + T + G + C)

• Create a GC count variable and an ATGC count
variable

• Loop over each base in the sequence

• If G, add 1 to GC count

• If C add 1 to GC count

• For everything, add 1 to ATGC count

Conditionals
Test c1 for True or False  
if c1:  
 print "c1 was True"  
c1 was False, check c2  
elif c2:  
 print "c1 False but c2 True"  
All checks False  
else:  
 print "Both False"  

Exercise: Functions
bases = 'adenine cytosine guanine thymine'

Write some code that:

• Makes a list of these bases from the string

• Uppercases the names (e.g. ['ADENINE', ...])

• Reverses the order (e.g. ['THYMINE',...])

Hint: Use help(str) and help(list) to see what functions are
available for strings and lists

Bonus: Write a for loop to print the first letter of each (e.g. A, C, ...)

Exercise
• Strings can be reversed with this special slicing notation:

[::-1] 
 
s = 'abc' 
r = s[::-1] 
print(r) 
 
cba

• Update reverse() function to use [::-1] instead of a loop.

• Do we need to do anything to complement()?  
What about reverse_complement()?

Functions
• Calling functions: length = len('abc')

• Defining functions: 
 
def double(x):  
 return x * 2

• Composing functions: 
 
def reverse_complement(seq):  
 return reverse(complement(seq))

• Avoid using global variables in functions

Exercise
• Write a function, read_fasta(filename) that:

• Takes 1 argument: filename

• Reads the file line-by-line

• Strips/combines the lines into one long line

• Skips the line if it contains a >

• Hint: if not 'i' in ‘team':

Reading files
• Open a file with the open() function:  
 
f = open('ae.fa')

• Loop over lines, and strip() each one  
 
for line in f:  
 print line.strip()

• Close with f.close()

Scripts
• Put code in a file, give it the .py extension

• Read command line-arguments from sys.argv: 
 
import sys  
print sys.argv[0]  
print sys.argv[1]  
 
$ python script.py hello  
script.py  
hello

• Check the length of sys.argv to be helpful!

